T lymphocytes

Lymphocytes

- 1.Lymphocytes are wholly responsible for the specific immune recognition of pathogens, so they initiate adaptive immune responses.
- 2.Lymphocytes are derived from bone-marrow stem cells.
- 3.B lymphocytes mature in the bone marrow. T lymphocytes mature in the thymus.

Steps in the maturation of lymphocytes

I. Ontogeny of T cells

Bone marrow Thymus Blood

Pro-T cell Pre-T cell Thymocytes T cells

Thymus

1. Factors promoting T cell development in the thymus

- Interaction of cell adhesion molecules between immature thymocytes and thymic stroma cells
- Cytokines (IL-1, IL-6, IL-7) and hormones secreted by thymic stroma cells
- Cytokines (IL-2, IL-4) secreted by thymocytes themselves
- MHC-autoantigen complex on the thymic stroma cells

2. Sequential development of thymocytes

Pre-T cells

no T cell marker expression, but TdT⁺ and some of them express CD7

Double negative cells (DN) CD4⁻CD8⁻⁻; CD2⁺, CD5⁺, cytoplasmic CD3⁺

- Double positive cells (DP) CD4+CD8+, CD1+, CD3+, γδTCR^{low}, αβTCR^{low}
- Mature T cells (single positive T cells) CD4⁺ or CD8⁺, CD2⁺, CD3⁺, TCR⁺

3. Positive and negative selection

Positive selection

- DP cells that bind, with moderate affinity, to MHC-Ag on thymic stroma cells survive----MHC restriction
- MHC I----CD8+ T cells
- MHC II----CD4+ T cells

Negative selection

- Cells that bind to MHC-Ag on thymic stroma cells (or autoreactive T cells, ART) will undergo apoptosis
- Formation of central immune tolerance

positive selection

- TCR interact with self MHC \rightarrow T cells develop
- TCR can not interact with self MHC \rightarrow T cells apoptosis
- MHC- I molecules select CD8+T cells
- MHC-II molecules select CD4+T cells
- Presented by cortical epithelial cells
- MHC restriction

negative selection

- High affinity TCR \rightarrow Ag/self MHC \rightarrow apoptosis
- Low affinity TCR \rightarrow Ag/self MHC \rightarrow mature
- By dendritic cells
- Clear auto-reactive T cell (ART)

© Elsevier. Abbas & Lichtman: Basic Immunology, Updated 2e - www.studentconsult.com

Downloaded from: StudentConsult (on 1 June 2006 04:16 PM) © 2005 Elsevier

© Elsevier. Abbas & Lichtman: Basic Immunology, Updated 2e Downwerd Studien Court Stud

© 2005 Elsevier

II. T cell surface markers

1. TCR-CD3 complex

> TCR

- A heterodimer comprising an α and a β chain or a γ and a δ chain joined by a disulfide bond.
- Function: specific recognition of peptide-MHC complex.

> CD3

- Consists of 5 proteins that are designated as γ, δ, ε, ζ and η.
- Three dimers: γε, δε, ζζ (ζη)
- The cytoplasmic domain contains ITAM (immunoreceptor tyrosine-based activation motif) YXXL/V
- Function: transduction of signals that lead to T cell activation.

2. CD4 and CD8 (coreceptor)

- Function: 1) Help TCR recognition of antigen
 2) help the TCR-CD3 signals transduction
- CD4: MHC II Ag binding, Receptor of HIV gp120
 CD8: MHC I Ag binding

Main costimulatory molecules mediating interactions between T cells and APCs

3. Co-stimulatory receptors

CD28: its ligands are B7 family molecules, including B7-1/2 (CD80/CD86)

Function: costimulation, activation of T cells

CTLA-4 (CD152): homodimer, homologous to CD28.

Function: inhibits T cell costimulation (the cytoplasmic domain contains ITIM)

- > CD40L (CD154): its receptor is CD40
- > ICOS: expressed on activated T cells

ligand---B7RP-1 (mouse monocytes, B

cells); B7-H2(human)

- CD2: SRBC receptor, LFA-2
- LFA-1 and ICAM-1: mediate adhesion between APC (or target cells or endothelial cells) and T cells or other leukocytes.

4. Receptors of mitogens

> PHA-R

- > ConA-R
- > PWM-R (also on B cells)

III. T cell subsets

- 1. CD4+T and CD8+T cells
- 2. TCR $\alpha\beta$ T cells and TCR $\gamma\delta$ T cells
- 3. Th, Tc and Treg
- 4. Naive T cells, effector T cells and memory T cells

IV. Functions of T cells

1. CD4⁺ helper T cells (Th)

Th0: T cells activated by Ag can secret many CKs in short time

Th1: produce IL-2 and IFN-γ, but not IL-4. They are chiefly responsible for cellmediated immune responses, but can also help B cells to produce IgG2a, but not much IgG1 or IgE;

Th2: secrete IL-4, 5, 10, 13, but not IL-2 and IFN-γ, are very efficient helper cells for production of antibody, especially of IgG1 and IgE ;

2. CD8+ cytotoxic T cells (CTL, Tc)

Function: directly kill target cells (cytotoxicity) Mechanisms:

- **1. Cytolysis (necrosis)** ----- three stages:
- a. contact phase: recognition of antigen in the context of MHC class I molecules
- b. secretory phase: release of cytolytic granules (perforin and granzymes)
- c. lysis phase: osmotic death
- **2. Cell apoptosis**
- a. FasL-Fas: CTLs express FasL interaction with Fas on target cells \rightarrow activation of caspase 8 \rightarrow apoptosis
- **b.** Granzymes \rightarrow caspase 10 \rightarrow apoptosis

Perforin: creates a hole in the target membrane

CD8 T killer cell (CTL)

`target cell

3. Regulatory T cells (Treg)

1) CD4⁺ CD25⁺ Foxp3 ⁺ regulatory T cells (Treg) Function: down-regulation of immune response by inhibiting the activation and proliferation of CD4⁺ or CD8⁺ T cells.

Mechanisms:

- Direct inhibition by contacting target cells.
- Down-regulation of the IL-2R α chain.
- Inhibition of CD80/CD86 and MHC I expression by APC, thereby inhibiting Ag presentation.
 - 2) nTreg

iTreg